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It is shown how to automatically adjust the grid to follow the dynamics of the numerical
solution of hyperbolic conservation laws. The grid motion is determined by averaging the
local characteristic velocities of the equations with respect to the amplitudes of the signals.

" The resulting algorithm is a simple extension of many currently popular Godunov-type
methods. Computer codes using one of these methods can be easily modified to add the
moving mesh as an option. Numerical examples are given that illustrate the improved
accuracy of Godunov’s and Roe’s methods on a self-adjusting mesh.

I. INTRODUCTION

In this report we consider the initial value problem (IVP)
w,+ f(w),=0; w(x, 0) = wy(x), —00 < Xx < 0. (1.1)

Here w is an m-column vector and the flux function f(w) is a vector-valued function
of m components. We assume that the Jacobian

AWw)=f,(w) (1.2a)
has m real eigenvalues

a;(W) < a,(W) < -+ < ap(W) - (12v)

and a complete set of right eigenvectors {R,(w)}i-,. Furthermore, we assume that
the system of conservation laws has an entropy function. That is, a convex scalar
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236 ’ HARTEN AND HYMAN

function U(w) and a corresponding entropy flux F(w) exist such that all smooth
- solutions w of Eq. (1.1) satisfy

UWw), + F(w), =0. | (1.32)

On the other hand, physically relevant weak solutions of Eq. (1.1) satisfy the
entropy inequality
Uw), + F(w), <0 (1.3b)

in the sense of distributions. Thus, admissible discontinuities in weak solutions of
Eq. (1.1) satisfy the Rankine~Hugoniot (RH) condition

S(wg) = f(w) = s(wg —w,) (1.4a)
and the entropy jump inequality |
C Fom)—Fm) < S[Uw) - Uwy)] (L4b)

Here wL and wy are the states for the left and the right of the discontinuity and S is
the speed of propagation of the discontinuity (see [10]).

We now discuss discrete approximations of weak solutions of IVP (1.1). Let {x x;}
be a fixed (not necessarily uniform) partition of the real line, and let {¢},,,} be a
variable partition of the real line that depends on the time level n. The set {I 7}
denotes the intervals defined by the partmon {&r 1)

IF = (Gj_1/2: §fs1/2)- (1.5a)

We consider piecewise-constant approximations v(x, ) to the solution w(x, ) of
Eq. (1.1), such that

v(x, t,) =07}, x€I;. (1.5b)

A typical example of such-a grid is shown in Fig. 1.
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Fic. 1. The numerical methods are formulated in the trapezoxdal regions.
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We require that v} approximate w(x, f) in the following average sense:

Conservation form
CHlp—Elipvit = &1 —&o1)v] — T”(f_}'+ 1/2 ‘Tf}-l/z)Q (1.6a)
Entropy inequality . |
( ;"l:xl/z }'+1l/2) U(”"“) ( }l+ 172~ ‘f}l— 1/2) U(v}’) -'1'”(1':'“/2 “F}+1/2)- (1.6b)

Here t"=t,,,—t, and f,, ,» and F, +1/2 are numerical fluxes cons1stent with the
fluxes of Egs. (l. 1) and (1.3) through the line connecting &7, , ;2 and EFLL ) in the

x — t plane, respectively. '

Schemes in conservation form on a fixed mesh, where &” i+12 =641 for all n,
cannot in general resolve shocks as perfect discontinuities. When the shock locatxon
is in the interior of the interval I}, conservation requirement (1.6a) implies that v}
an average of wy and wg. Thus a certain amount of smearing is inherent in ﬁxed
mesh calculations in conservation form.

Smearing admissible discontinuities in a fixed mesh calculation can be avoided by
using a random choice method [2] or by a shock-fitting approach [11]. In the
random choice method, the strict conservation (1.6a) is replaced by a requirement of
conservation in the mean. When a shock location is in the interior of an interval 17,
then v} is chosen randomly to be either w, or wg, thus keeping the dlscontmulty
sharp. The sampling of the two states is such that the expected value of the
propagation speed of the shock satisfies RH condition (1.4a) [6].

In the shock-fitting approach the discontinuity is considered a.moving internal
boundary, the motion of which is determined by w,, wg, and the RH condition. Once
the shock location at the advanced time level is known, wi*', wit!, and v?*' are
computed as two coupled boundary value problems.

Another technique to achieve perfect resolution of a particular discontinuity is
front tracking. As in shock fitting, propagation of the shock front is followed
explicitly; unlike shock fitting, the shock front is not considered a moving internal
boundary. The perfect resolution of the shock is obtained by making its location
coincide with a mesh point, say &}, and by using a numerical scheme that can
perfectly resolve a stationary shock. When applied to a self-adjusting mesh
calculation in which &7 lies on the path of the shock for all , the numerical flux 7,
when considered in a system of coordinates that moves with the speed of the shock
(&3 —E&7)/x", is identical to that corresponding to a stationary shock, thus yielding
a perfect resolution [8, 9].

In this report, we consider numerical solutions using deterministic schemes in
conservation form on a self-adjusting grid. The interval end points {{7, } are
constrained to satisfy

X <& <X (1.7)

where x; is the underlying fixed mesh. The location of the discontinuities &, ,, is

cons1dered a variable associated with the (x;, x;,,] cell of the fixed mesh.
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Unlike front tracking, we adopt the point of view of Godunov [3] and consider
each discontinuity of v(x, ¢,) at {{],,,} a Riemann problem. We select £7+], at the
advanced time level in such a way that the averaging procedure used to define v #*1in
(&1, &1 12) will retain information about the most significant waves in the
neighboring Riemann problems. In particular, if a single shock or a contact discon-
tinuity is the solution of the Riemann problem at &7, ,,, the mesh algorithm
automatically places one of the mesh points {&]*),,, &1t1,, €71, on the path of this
discontinuity, thus enabling its perfect resolution.

The goal of this preliminary study is to investigate the effect of a self-adjusting
mesh on the quality of numerical approximations obtained by Godunov-type
schemes. We stress the improvement in the methods caused by the self-adjusting mesh
algorithm, rather than the relative performance of various schemes. :

In Section II we describe Godunov-type schemes on a moving grid and in
particular derive an expression for the numerical fluxes of the Godunov scheme [3]
and the Roe scheme [12]. In Section III we describe a self-adjusting mesh algorithm
that minimizes the diffusion in Godunov-type schemes, and in Section IV we present
some numerical experiments that illustrate certain features of numerical solutions of
Godunoy’s scheme and of Roe’s scheme on the proposed self-adjusting grid. In the

Appendices we derive a version of Roe’s scheme that satisfies the entropy inequality.

II. GopUNOV-TYPE SCHEMES ON A VARIABLE MESH

In this section we construct Godunov-type schemes on a variable mesh. Consider
the IVP

w,+ f(w), =0, w(x, 0)=v(x, t,), —0 < x < 0, (2.1a)

where v(x,t,) is the piecewise-constant approximation (1.5) to the solution of
Eq. (1.1) at £ =1,. Next we obtain an approximation w"(x, ) to the solution of (2.1a)
for 0< 1<, —0 <x< o0, when 7 is sufficiently small. Once we have evaluated
w"(x, 7), we define the new piecewise-constant approximation v(x, ¢,. ;) by

1
+1 __ n
U = n+1j lw(x,ﬂc)dx (2.1b)
j+1/2 7 Sj—12 71t
and

v(x, b,y ) =0}, xEIJ'-"’f’. ' (2.1¢)

We construct w”(x, ¢) from approximate solutions to the Riemann problems for the
jump discontinuities in v(x, ¢,) at the points {&,,,}. The solution to the Riemann
problem

w,+ f(w), =0, w(x, 0)=W,_, x <0,

2.2
= Wg, x>0, 22)
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is self-similar in the variable x/t; therefore, we consider self-similar approximate

solutions to Eq. (2.2), which we denote by w(x/t; w,, wg). Because of the hyperbolic

nature of the system of conservation laws, there is a finite domain of influence of the
discontinuity at x =0, We assume that same for the approximate solution w(x/t;
wy, wg); that is, there exist ﬁmte speeds a —a"(wL,wR) and a®=a (wL,wR)
where

- <a"<at <+ C (2.3)

and w(x/t; wy, wy) = w_, for x/t < a* and w(x/t; wy, wg) = wy when x/t > a®

We now consider the approximate solutlon to the Riemann problem w(x/t v}
v},;) and denote by the subscript j+ 3 quantities associated with 1t To assure no
interaction between the two nelghbormg Riemann problems at j — % and J+3 1, we
restrict the time step by the Courant-Friedrichs—Lewy (CFL)- hke time- -step
restrictions

R ‘ lign -
- 12+ 817K i(é}l_— 12+ &)
and
L 1
&t @12 =3 12+ & 102)-
Hence for 0 < ¢ < 7, where

T mjgx{a;‘l—l/z/(éﬁ 12— - 1/2) “a}l 1/2/(51"l+ 12— 612} < 3 (2.4)

the function w"(x, ) defined by
Wi ) =Wl — &)/ 60, 050] 25)

for
&+ &) <X 12+ E3n)

is univalued. Thus a Godunov-type scheme corresponding to the approximate
solution of the Riemann problem w(¢/t; w,,wg) can be formally defined by
Egs. (2.1), (2.4), and (2.5). However, to make the resulting Godunov-type scheme a
meaningful approximation to physically relevant weak solutions of Eq. (1.1), more
properties of w(x/t; wy, wg) are needed.

In [7, Theorem 2.1], Harten and Lax assert that 1f w(x/t Wy, wg) is a Lipschitz
continuous function

lw(x/t Wi, WR)l L0( WR - le) (2.62)

that satisfies the following conditions:
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consistency with the integral form of the conservation law

[ W/t e wa) d = Awy 4w =)~ S, (26)

consistency with the integral form of entropy inequality (1.3b)

[ UOne/es we wa) dx < 410w + Ulwi)] = lF ) — FOw)] - (260)

for all ¢ and 4 such that

—A L ab < aR < 44, (2.6d)

then a Godunov-type scheme defined by Egs.(2.1) and (2.5) under time step
restriction (2.4) has conservation form (1.6a) and satisfies entropy inequality (1.6b).
This entropy inequality implies that the numerical solution is bounded in the /,
norm [8]. However, I, stability does not imply convergence in the nonlinear case.
Consistency relation (2.6b) enables us to define a numerical flux function
F(&we,wg) that approximates the flux of Eq. (1.1) through the line € = x/f as seen in
Fig. 2 by the relation

- &
(& we, we) =1 (W) +dw — LA w(x/t; wy, wg) dx (2.7a)
or, after rearranging,
& ‘ .
f-A w(w/t; wy, wg) dx = dw, —t[ f(§; wi, wg) — Swo)] (2.7v)

To see that Lipschitz continuity assumption (2.6a) implies that w(x/t;v,v)=0v;
consequently, (note that the nume;ical flux (& wy, wg) is consistent with the flux of
Eq. (1.1) through any line x/t = &):

(&0, v)=1(v) — dv — f& w(x/7; v, v) dx.
-A (2.8)

=1f(v) — dv — (vT + A = 1[f(v) — &v].

po

+A X

t=o

FiG. 2. The flux through the line £ = x/¢ is approximated in Eq. (2.8).




el e P A P B

HYPERBOLIC CONSERVATION LAWS 241

Hence,
| f&v,0)=fv)-&
for all & and .

Having obtained a numerical flux function f(& w,, wg), we may now define the
corresponding conservation form scheme on a variable mesh by

( ,;1:11/2 - }'jll/z)U}'H = ( }'+1/2 - ;’ 1/2)0"' f[(fnfll/z +1/2)/T; vj, ”1"'4-1]
—fI¢ T ST vi1, v 1) ) _ (2.9)

A typical example of such a mesh is shown in Fig. 1.

The conservation form scheme (2.7) and (2.9) is well defined for all {7, ,,,} and t.
However, it becomes identical with Godunov-type scheme (2.1) and (2. 5) only if 7 is
restricted by Eq. (2.4) and if &J, ,, is an increasing function of j.

The CFL-like time-step restriction (2.4) is used to represent the Godunov-type
scheme (2.1) and (2.5) as a univalued average of approximate solutions to local
Riemann problems; it is also used in the Harten—Lax theorem in proving the entropy
inequality. In the constant coefficient case, this less stringent condition can be proven
to be sufficient for stability and has been found numerically to be sufficient for the
scheme to be stable in the nonconstant coefficient case.

In the methods presented here we require that the domain of 1nﬂuence of the
Riemann problem at &7, ,/, be contained at t=t,,, in (&1, & ),); that is,

}!jll/Z < §J+1/2 +a +1/2T < éj+ 1./2 + a}{+1/27 < éﬁsl/z, (2.10a)
which allows a time step twice as large as Eq. (2.4); that is,

4 mjax{a]‘.‘_ 12/ €12 = &f-112); —aj 1o/ &1 p—E)t < L (2.10b)

We now describe two versions of Godunov-type schemes.

A. Godunov’s Method

In Godunov’s scheme [3], the exact solution to Riemann problem (2.2) is used. Of
course the exact solution satisfies all requirements (2.6) of the Harten—Lax theorem;
consequently, scheme (2.1) and (2.5) has conservation form (2.9) and satisfies
entropy inequality (1.6b). Because w(x/t; wy , wy) satisfies the differential equation in
the domain —4 < x < &r when <1,

v &
[ ar j dx[w, + f(w),] =0. (2.11a)
o J-a
Using this to evaluate numerical flux (2.7b) we have

J@; we, wo) = F(w(@; wwr)) — Sw(v; we, wg). (2.11b)
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An algorithm for computation of the exact solution of the Riemann problem for the
Euler equations has been developed by Godunov and modified by Chorin [2]. This
algorithm takes a simple form because the second wave for the Euler equations of gas
dynamics can be only a contact discontinuity. However, when measured- relative to
the computer execution time of a flux computation, it is still an expensive algorithm.

B. Roe’s Method

In Roe’s scheme [13], a linearized equation is used to approximate the solution to
the Riemann problem. Roe constructs a constant mean value Jacobian A(w, , wg),
such that

Jr) = f(w) =A(wp, w) (W — wy), (2.12a)

and A(wL, wyg) is consistent with the Jacobian, 4(w, w) = f,(w), and has real eigen-
values ’

a;(we, W) < ay(wp, wp) < -+ < a,(We, wg)

and a complete system of right eigenvectors {R, (w;, wg)}r=,, for all w, and wy.
The approximate solution w(x/t; w,, wg) is taken to be the solution of the constant
coefficient linear Riemann problem

w,+A(wy, wp)w, =0, (2.12b)
with the initial conditions
w(x, 0)=w,, x <0,
= Wg, x> 0.
Substituting this solution for w(x/t; w,, wg) in Eq. (2.75), we obtain
FEmam)=1 [f)+F = 3 wlal R, @13)

where the a,(w,, wg) are defined by the relation

Wg — W = Z a R (W, wg)s (2.13b)

k=1

and f(w) and @,(w,, wg) are

Fw)=fw)—éw (2.13c)
and

@ (Wi, wr) = ay(wy, we) — & (2.13d)
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Roe’s scheme (2.9) and (2.13) is in conservation form and is' monotonicity preserving
in the characteristic variables for the constant coefficient case; however, it may
violate entropy inequality (1.6b) (see [8]). :

To prevent entropy violation we modify Roe’s scheme by addmg an entropy
viscosity term as described in Appendix A. The effect is to replacc the quantity |@,| in
(2.13a) by Q,(a,), where

Qk_(x)=|x|a | x| > 0y,

_ 2.14a
=5k, lxl < Oys ( )

i.e., m

T w )= [f(wL) 4T = 3 a0l Ralwiw)|- - (214b)
Here, 5k—6k(wL, wg) is a nonnegative quantlty that measures the violation of the
entropy condition in the kth characteristic field; J, = 0 if and only if the kth wave in
the solution to (2.12b) is a shock. See the Appendix for more details. ,

Roe’s scheme even as modified in (2.14), in our opinion, is considerably simpler
and computatlonally more efficient than Godunov’s scheme. In this report we will use
this modified Roe scheme unless otherwise stated. In [12] additional ways to use the
linearization are presented. '

: III. A SELF—AVDJUSTING MESH ALGORITHM

In this section we describe a self-adjusting mesh for computations with Godunov-
type schemes. The approximation associated with those first-order accurate Godunov-
type schemes of Section II is. that of piecewise-constant functions; that is,

v(x, t,) =07} for & 1 <x<&fyip- 3.1
We consider the case where the interval end points {7, ,} are constrained by

X < &1 < Xjp - (3.2)

for all j and n. Here x; is an underlying fixed grid (not necessarily uniform). Thus
{&iv1pt is a variable assomated with the (x;, x;, ] cell of the underlying fixed mesh
(see Fig. 2).

Given {&),,,,} and {v}}, we construct a self-adjustmg mesh algorlthm that selects
{ ,'-'fl‘,z} n >0 to satisfy the following requirements:

(1) v?*! computed by a Godunov-type scheme (2.1) and (2.5) should capture
the main features of the neighboring Riemann problems at j + 1/2; in particular, if at
time ¢, a single isolated admissible discontinuity emerges from a neighboring
Riemann problem and ends at time ¢, in the half-open set (xj, 1+1]’ then &}'f/,

should coincide with its location.
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2) é"fll/,_ is an increasing univalued function of the cells (x;,x;,;]. This

- implies there is exactly one interval end point in each cell (x;, x;,,].
@) If 6})+ 1727 1 1/2 d then
e — &, >4d;,  forall jandn, (3.3a)
where
d;=min{x;, ; —Xx;, X; — Xx;_;}. (3.3b)

The last requirement (3.3) ensures that the time step 7" in Eq. (2.10b) is bounded
away from zero. The most stringent condition in Eq. (2.10b) is then

T"mj?-x{a}‘—l/z/dj" j— 1/?/dj} 1. (3.4)

This corresponds to limiting the CFL number of 4 with respect to the corresponding
CFL condition on the fixed underlying grid.

The solution w(x/t; wy,wg) to Riemann problem (2.2) is a fan of m-waves
arranged in increasing order in the index of the characteristic fields (1.2b). If the kth
characteristic field is genuinely nonlinear, then the k-wave is a shock or a rarefaction,
depending on whether the kth field is convergent or divergent, respectively. When the
kth characteristic field is linearly degenerate, the k-wave is a contact discontinuity
(see [10]). Figure 3 illustrates how these waves propogate in two neighboring
Riemann problems.

The numerical solutionv;*" is computed as the average (2.1b) of the part of the
solutions to the Riemann problem at x=¢&j_,,and x=¢7,, 2> which is contained in
the interval I7*! = ( ;’*11/2, 2], Consequently, the smearing caused by averaging
of a k-wave in the j+ 3 Riemann problem depends on its distance from &}}/,.
Maximal diffusion in a k-wave occurs when it falls in the center of the interval 17+’

n+1

F1G. 3. . The solutions to the Riemann problems at &, ,,, are composed of constant states separated
by a fan a characteristic lines.

3%
Serrered

+ e i
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or I7/!; minimal smearing occurs when the wave falls on an end point of the
interval. : . »

Unfortunately, there is one interval end point per m-wave; therefore we cannot
prevent diffusion of all m-waves for m > 1 by selection of a single point &f),.
Consequently, we compromise and choose interval end points that minimize, in a
certain sense, the overall diffusion in the Godunov-type scheme. We do so by moving
the interval end points with a speed &(w, , wy), which is a weighted average of the m
speeds of propagation of the waves in w(x/t; w,, wg) such that

at(wy, wg) < &wp, we) < aR(wy, Wr)s (3.5a)

see Eq. (2.3) and Fig. 2. ,

~ We consider &(w, , wg), where the weight assigned to the kth characteristic speed
represents the relative significance of the k-wave in the Riemann problem. We shall
use weights that are monotone increasing functions of the amplitude of the wave that
vanish if and only if the magnitude of the wave is zero. It follows from this property
that if w(x/t; wy,wg) is a single shock or a contact discontinuity moving with a
speed s,, then ' : : S

é(wL’ WR) = 5. - | (3.5b)

We see now that we can satisfy requirement (1) of this section by moving the
interval end points &7, ,,, with the speed 'j’-‘H = E(v}’, v, ). However, this strategy
may violate requirement (2), because it is possible to have none or more than one
interval end point in the cell (x;, x;, ] at t=t,,,. We therefore consider such motion
of the grid to provide temporary values { #ta} for the interval end points

_ ,
T =&+ T (3.6)

Under time-step restriction (2.10), inequality (3.5a) implies that {E%}1,} either
stays in the cell (x;,x;,,] or lands in one of the immediate neighboring cells
(tj1,X;] or (x;41,%;,,]. Thus, at time #,,,, the cell (x;,x;,,] may contain any of

n+1 Fn+1 Zn+1
{ j—1/29 Sj+1/2 j+3/2}, Oor none.

To satisfy requirement (2) we use the following strategy: if one or more of the

above mentioned points {-}'_*1'/2} is in the cell (x;,x;,,], we assign a single location

fnt ., which is a weighted average of the location of the points in the cell; the
weights are proportional to the amplitude of the Riemann problem associated with

'tahe moving interval end point. If there is no point of {¢"*'} in (x;, X;, 1], we assign
12 to the center of the cell.

We accomplish all this in a single sweep over the mesh, defining
ol l —
J"Tll/z = %(xj + xj+1) + Z [6j+1+1/2 - 'li(xj + X5, D]
1=—1

X ﬁj+1+ 2P 414 125 Xjs Xj 4 1)

/ﬁj+l/2' (3.72)
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Here B, +1/2—,B(v,,v, 1) _is a weight representing the magnitude of the Riemann
problem associated with &} 12> and A(x; a, b) is the interval functlon of (a, b),

h(x; a, b)—z[sgn(x a) + sgn(b — x)] o ‘(3._7b)

That is, h=1 for a < x < b, and & =0 otherwise: ,B 1218 @ welghted amphtude of
the waves present in the cell (X x50 ] at t=1¢,,,,

. . 1 - - :
ﬁi+1/2 = 12 ﬂj+1+ 1/zh('fj+1+1/z 3 Xjpy Xjy )+ e (3.7¢)
=—1 . »

Here ¢ is a relative cutoff value that is at least one order larger than the round-off
error on the computing machine used. (From now on we use this cutoff convention
for all nonnegative denominators.) \

- We note that if one of the interval end points {&7},, &F1,, EFl ) corresponds to
a single isolated admissible discontinuity propagating from one constant state into
 another, then &'}, in (3.7) coincides with its location.

After calculating (€ }‘I,‘,z} by Eq 3.7) we have exactly one mterval mesh point in
each cell (x;, x;,,]; however, &*} ', and &}, may both come very close to x;, thus
violating requxrement (3). The last stage of our self-adjusting mesh algorlthm is a
regularization step that enforces requirement (3). In this step we examine the length
of each interval [7*! = (£1+!,, &+l . If the length of the ["*" interval is larger than
3d; in (3.3b), we leave it unchanged. If its length is smaller than 3d;, we push its end
points apart until its length becomes exactly 3d;, by

‘ }ljll/Z =&, - %djﬁj+ 1/7/(,Bj+ 2+ B5-12) (3.8a)
and

;:11/2 = “}1:11/2 + %djﬁj—l/Z/(ﬂj+ 1/2 ‘+ :an~—1/2)9 (3.8b)

where ﬁj +1/2 18 defined by Eq. (3.7¢). It is easy to see that {£}.F},}, the results of this
operation, satisfy requirements (1)—(3). In particular, if there is an isolated admissible
discontinuity propagating from one constant state into another, its location at ¢, ,
coincides with one of the interval end points.

We now complete the description of the self-adjusting mesh algorithm (3.6)~(3.8)
by specifying expressions for &(w,, wg) in Eq. (3.6) and B(w,, wg) in Eq. (3.7a).

First we describe such expressions that are convenient for computations w1th Roe’s

scheme (2.13) or (2.14).

We define
E(Wu Wg) = Z [ax(wp, we)]? (3.92)
and B
| &wy, we) = 2 ara(wy, wr)/Bwe, we)s (3.9b)

k=1

L&
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where a,(w_,wg) are the eigenvalues of the mean value Jacobian 4(w,,wg) -in
Eq. (2.12), and a,(w., wy) are given by Eq.(2.13b). The jump in the kth charac-
teristic variable in the linearized Riemann problem (2.12b) is a,(w., wg) and is
therefore an approximation to the amplitude of the k-wave. Relation (2.12a) implies
that if w, and wy satisfy the RH condition (1. 4a), then

S(WR - WL) f(WR) f(WL) A(WL’ WR)(WR - WL)

Thus wg — w, is a right eigenvector of A(w,, wR) and a,(w,, wg) is a characteristic
speed. It follows from Egq. (2.13b) that a (wL, wg) =0 for j+# k, and therefore in
Eq. (3.9b), &(wy, we) =S =a,.

Note that o, and a,, needed to evaluate Eq. (3. 9) are also needed to compute the
numerical flux (2.13)-(2.14) of Roe’s scheme. Thus the self-adjusting mesh algorithm
requires only a little extra computer execution time. '

Next we consider the following expressions for B(w.,wg) in Eq.(3.7a) and
&(w,, wg) in Eq. (3.6) convenient for Godunov’s method:

.E(WLs wr) = (Wg —wy) - [U,(wg) — U, (w,)] (3.10a)

and

&wes wr) = [Fw) = )] - [U0wr) — U (wL))/B(we, we).  (3.10b)

Here U, is the gradient of the entropy function and - denotes the Euclidean inner
product.’ Although Eq. (3.10) does not contain explicit evaluation of a, and a,,-it is
identical with Eq. (3.9) for a particular choice of a mean value Jacobian 4(w, , wg).
To show this, we follow the results of Harten [4] and use a succession of mean-value
procedures:

U,(wg) = U, (W) = P(wy, we)(Wg — W) (3.11a)
and | .
Swr) — fw) =Sy, we)[U,(wr) — Un(wr)] (3.11b)
to get | »
Fwa) — f(w,) = SP(we — we). (3.11c)

Here P is a positive deﬁmte matrlx such that P(w, w)=U,, > 0 and Sis a
symmetrlc matrix such that ‘ ‘

- S(w,w)=af/oU,.

Relation (3.11c) is the same as Eq. (2. 12a) with A(w,, wg) = SP. Next we rewrite
Eq. (3.10) as

ﬂ(WL’ wg) = (Wg —wy) - P(WR —wp) =[P (wg — w)|? . (3.12a)
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and

Ewe, wg) = [SP(wg —w.)] - [P(wg —w.))/B(wy, wg)
= [(P'2SP'?) PV*(wy — wi)] - [PV (wg — WL)]/ﬁ_(WL’ wg).  (3.12b)
The matrix PY/2SP? = PV24(w,, wg)P~"/* is symmetric and similar to A(wy, wy).

Let {E,} be the orthonormal system of eigenvectors of P¥2SP'? and @, be the
coefficients in the representation

m

PI/Z(WR—WL):“ Z d’kEk'

k=1
Then Eq. (3.9) becomes

Bw, wg) = él ar (3.13a)
and

dmw)= S EayBom, w), (.130)

k=1

where a, are the eigenvalues of 4(w,, wy) = SP. However, R,, the right eigenvectors
of A(wy,wyg), are related by R,=P~'2E, to the eigenvectors E, of PY2SP?,
therefore Eq. (3.13) and consequently Eq. (3 10) are 1dentlcal with Eq. (3.9) for this
particular 4(w, wg).

IV. NUMERICAL EXAMPLES

The numerical methods described thus far have been for general systems of hyper-
bolic conservation laws. The numerical examples will be for the simple but important

- case—the Euler equations for an inyiscid compressible polytropic gas. These

equations can be written in the form of Eq. (1.1) with

w=(p,m E),  f(w)=uw+ (0, p, pu)T, 4.1)

where p =mass density, u =the velocity, m = pu is the momentum, E = the total
~ energy per unit volume, and p = (y — 1)(E — 3pu?) is the pressure. The parameter 7 is
a constant greater than one and equal to the ratio of the specific heats of the gas. For
this equation of state we have

d _w

2
= 0,
& € > }
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where ¢ is the local sound speed of the gas and is related to the characteristic .

velocities u, u + ¢, and u — ¢ of Eq. (1.1).

The quantities needed for Roe’s scheme in (2.13) and (2.14) are derived for the
Euler equations in Appendix B.

We will present numerical results for two typical Riemann problems for air
(y = 1.4) that have appeared in the literature as standard tests. The first example was
used by Sod [14] to compare many of the popular numerical methods. The initial
discontinuity in this problem breaks into a weak shock wave followed by a contact
discontinuity and a rarefaction wave. All the variables are discontinuous across a
shock wave; however, across a contact discontinuity the density is discontinuous but
the pressure and velocity are continuous. In the rarefaction wave all the variables are
continuous.

In the second example, suggested by P. Lax [1, 5], the initial discontinuity breaks
into a moderately strong shock followed by a density level far above its initial state.
The contact discontinuity then lowers the density, which is rebuilt slowly by a
rarefaction wave.

In the self-adjusting grid methods, the mesh at the ¢ break points is advanced on
each time step according to Eq. (3.6). We experiment with the mesh velocity éj 2=

( h +1) defined by averaging the characteristic speeds with respect to the relative
Jjumps in the characteristic variables, according to either Eq. (3.9) or Eq. (3.13). After
advancing ¢, the grid is regularized by using the procedure described in Section IIL

The Riemann problem solved here can be considered an interaction problem at
t=0 because the initial data break into three strong waves. The mesh velocity
equations were developed to be accurate for isolated waves and to give the most
weight to the strongest wave by averaging during an interaction. The mesh
adjustment technique can help in interactions, but there will be a loss of information
depending upon the scheme’s ability to resolve different waves. A procedure that may
help overcome some of the scheme’s difficulties is to locally refine the mesh near an
interaction until the waves have separated sufficiently to be accurately resolved on
the coarser reference mesh.

To test the performance of the self-adjusting mesh algorithm, the initial conditions
at time ¢, will be given both during an interaction (¢,,, =0) and after the waves
have separated (¢,,;, > 0).

Both the Godunov and Roe methods compute integral values of the solution (2.1b)
at x;. In the rarefaction wave these integral values may differ significantly from the
pointwise values needed by the plotting algorithm. For this reason we will plot the
approximate pointwise pointwise values at ¢;, ,/, as

Viv12= [(fj+ 2= X) Vi1 + K51 —&51p2) Uj]/(xj+ 1—%5) (4.2)

when appropriate. The difference between these two methods will be illustrated for the
Sod example. ,

The pointwise values of an exact solution at the mesh points will be plotted as a
dashed line and the numerical solutions as a solid line. In some of the figures the
numerical values of the computed solution will be designated by X.
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A. The Sod Example

- In the Sod example the solution at ¢ =0 is defined by

0<x<t 1<xK1

p= 10 0125 |
m= 00 0000 @43)
E= 25 0.250 v

The numerical calculations are shown at ¢ =0.25. All used 50 mesh points, and the
CFL condition number was 0.5. '

DENSITY

VELOCITY
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We first .describe the numerical results obtainéd when the initial :conditions "are

‘taken after the waves have separated Next 'we describe those results for: the Rxemann
-problem. R ,

1. Imtzal Condztzons att= O 125

The Godunov and Roe: methods’ results on a ﬁxed msh are almost identical (see
Figs. 4 and 5). Recall, however, that Roe’s method is computationally simpler and
more efficient than Godunov’s. For this calculation there seems to be no advantage to
using the- costly: exact Riemann solver over the approximate solution method. Both
methods are equally bad and the shock wave and .contact discontinuity are smeared
almost beyond recognition. :

DENSITY

VELOCITY

0 1

Fic. 5. The fixed grid Roe solution to Sod’s problem at ¢ =0.25 with £;,;, = 0.125.
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The only change in the algorithm used to produce the Godunov results in Fig. 6
compared to Fig. 4 is that the mesh was adjusted using Eq. (3.13) instead of being
fixed. In Fig. 7 the integral values for the solution are plotted as if they were
pointwise values instead of averaged according to Eq. (4.2). The mesh was adjusted
according to Eq. (3.9) and Roe’s method was used in Fig. 8. Note the dramatic
increase in accuracy for both Godunov’s and Roe’s method on the self-adjusting grid.
The shock wave and contact discontinuity both have been maintained to one zone.
Note again how similar the Godunov and Roe method results are.

The integral values in the rarefaction wave (Fig.7) have some imperfections
(multiple constant states). These are caused by the sampling algorithm and the low-

DENSITY

VELOCITY

X

0 1

FiG. 6. The self-adjusting grid (3.13) Godunov solution to Sod’s problem at =025 with
Linie = 0.125. .

init . . ".‘
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DENSITY

VELOCITY

FiG. 7. Integral values of the solution in Fig. 6.

order constant state assumption used by the method much in the same way they
occur in the random choice algorithm [2].

2. Initial Condition at t = 0.0

When the initial conditions are defined at t=0 (the Riemann problem) by
t =0.25, the Godunov solution on a fixed mesh, shown in Fig. 9, has diffused even
more than in Fig. 5. Again, the Roe solution (not shown) is almost indistinguishable.
Errors in the self-adjusting mesh methods (see Fig. 10) are introduced by inac-
curately resolving the interactions at t=0. Some of these errors are the result of
averaging caused by using a low-order scheme that assumes a constant state between
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FiG. 8. The self-adjusting grid (3.9) Roe solution to Sod’s problem at ¢ = 0.25 with £, = 0.125.

the £;. These errors can be reduced by refining the grid around the interaction until
the waves are sufficiently separated on the coarser reference grid.

Some major differences between the self- ad]ustmg mesh methods and the ﬁxed grid
methods are

(i) the shock waves contract to one zone and maintain thxs resolutlon
throughout the calculation,

(ii) errors introduced into the contact discontinuity nelther grow nor shrmk in
time because they are an allowed solution to ‘Eq. (1. 1)

(111) the rarefactlon wave is not, in general as smooth as is the fixed mesh
calculations because the self-adjustmg grid introduces far less art1fic1al d1ss1pat10n, it

]
t
V
1
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DENSITY

VELOCITY

FiG. 9. The fixed grid Godunov solution to Sod’s problem at ¢ = 0.25 with £;; = 0.

b

|

. 1

is, however, closer to the exact solution and retains more information on the solution ’
structure. i

; The Roe scheme with the entropy viscosity term was also run for this problem and
no discernible differences were found between these and Fig. 10. Roe’s scheme may
? violate entropy inequality (1.4b) unless a term such as Eq. (2.14) is used [8]. The
solution shown in Fig. 11 was computed without an additional entropy viscosity term } )
and illustrates how important the entropy viscosity 1s to prevent nonphysical
solutions from occurring.
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Fic. 10. The self-adjusting grid (3.13) Godunov solution to Sod’s problem at ¢ = 0.23 with #;,;, =0.

B. The Lax Example

In the Lax example the solution at ¢ =0 is defined by

| 0<x<:  1<xgl

p= 0445 0.5 :

| | m= 0311 00 (44)

; ' _ E= 8.928 1.4275

The numerical calculations are shown at ¢ = 0.15; all used 100 mesh points, and the

- CFL condition number was 0.5. As in the Sod example, we will first describe the
N

;

L
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DENSITY

|
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I
|

VELOCITY

Fic. 11. The self-adjusting grid (3.9) Roe solution to Sod’s problem at ¢ = 0.25 with ¢,,;, =0 and no
entropy viscosity (2.14).

numerical results obained when the initial conditions are given after the waves have
separated. :

1. Initial Conditions at t = 0.075

, The fixed grid solution calculated by the Godunov method is shown in Fig. 12.
I Even though the correct density behind the shock was given by the initial conditions,
the- artificial viscosity inherent in the Godunov method has reduced it to well below
its correct value. Also, note the nonphysical error in the velocity and pressure profiles
at the contact discontinuity location. There errors were unexpected because of the
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DENSITY

VELOCITY

Fic. 12. The fixed grid Godunov solution to Lax’s problem at ¢ = 0.15 with £, = 0.075.

monotonicity preserving properties of the method. However, these monotonicity
properties are valid only for the conserved variables, not for those quantltles derived
from them, such as the velocity -and pressure. -
When self-adjusting grid algorithm (3.13) is used, the Godunov results improve
considerably (see Fig. 13). The shock and contact discontinuities both have been
maintained to. one zero. This again demonstrates that after the waves have separated
the self-adjusting mesh allows them to be tracked with little or no loss in resolution.

2. Imtzal Conditions at t =0

When initial conditions (4. 4) are glven at ¢t = 0, the fixed grid’ Godunov solutlon in
Fig. 14 again exhibits the extremely diffusive nature of the scheme. Note how much
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Fic. 13. The self-adjusting grid (3.13) Godunov solution to Lax’s problem at t=0.15 with
tinit = 0.075.

the calculated rarefaction wave and the strength of the shock are in error when
compared to the exact solution. These errors are due almost entirely to this
overwhelming diffusion. :

The self-adjusting mesh Godunov solution in Fig. 15 is much better than the fixed
grid solution. The shock has compressed to one zone but the contact is not as sharp.
The errors introduced into the contact during the interaction at ¢ = O neither grow nor
decay in time. The rarefaction wave is much more accurately approximated than it
was in the fixed mesh calculation but is not as smooth. This difference again
illustrates how much the artificial viscosity introduced by the method is reduced on a
moving mesh. :
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DENSITY

llllll'llllJll‘

VELOCITY

FiG. 14. The fixed grid Godunov solution to Lax’s problem at ¢ = 0.15 with £;,;; =0.

In numerical experiments, not presented here, we found little difference between the
accuracy in the solutions generated by the two different mesh velocity algorithms
(3.13) and (3.9) for Roe’s method. Also, we found that even though the fixed mesh
algorithms are highly sensitive to the CFL number, the self-adaptive grid solutions
are insensitive to changes in the CFL number between 0.1 and 0.95.

V. CONCLUSIONS

These conclusions are based on a large number of our numerical experiments, only
a sample of which is presented in this report.
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DENSITY
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4
4

Fig. 15. The self-adjusting grid (3.13) Godunov solution to Lax’s problem at t=0.15 with
tinit=0'0‘

First, we want to comment on the performance of the first-order Godunov-type
schemes considered here and in particular to compare Roe’s scheme with Godunov’s
scheme. Both schemes are based on a piecewise-constant approximation, the discon-
tinuities of which are propagated as waves in a Riemann problem. We find that these
schemes, as expected, handle wave propagation accurately. However, averaging is the
only mechanism to simulate variations in the structure of the solution. This crude
approach requires a large number of mesh points and consequently a large number of
; time steps to obtain a good resolution. These schemes all performed poorly in
rarefaction regions and even more poorly in resolving interactions.
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We found very little difference between Roe’s scheme (as modified in (2.14)) and
Godunov’s scheme on the static or the self-adjusting grid. In fact, in most cases the
results are almost identical. This finding indicates that the averaging error in the
numerical method is much larger than the differences in approximating the solution
to the Riemann problem.

We were surprised to find mstances as in Fig. 4, in which these Godunov-type
schemes produced noticeable nonphysical oscillations in the numerical solution.

On a fixed mesh both schemes exhibit a strong dependence on the CFL number.
The CFL restriction of the linear stability analysis was found. adequate on both the
fixed and the self-adjusting meshes. We find that the self-adjusting mesh algorithm
makes the performance of the Godunov-type schemes almost. independent of the CFL
number. .

The self-adjusting mesh algorlthm reduces the d1ffus1on caused by averaging and
makes it possible for admissible discontinuities to be propagated as perfect discon-
tinuities. Initially smeared shocks become jump discontinuities; however, a smeared
contact discontinuity is propagated as such because it is an exact solution of the
partial differential equation, but no further smearing occurs. Because rarefaction
waves are less diffused, their description contains more information. Eliminating
much of the diffusion error enables us to examine the rate at which information of
spatial variation is fed into the numerical solution; we grade both methods as poor.

After removing the averaging diffusion from Roe’s scheme on a self-adaptive mesh,
we find that this scheme selects a negative shock rather than an expansion wave as
shown in Fig. 11. The addition of the entropy viscosity developed in Appendix A
remedies this. However, entropy viscosity is of order O(4x?), which is enough to
exclude nonphysical solution in the limit but is not enough to considerably improve
the slow rate at which the rarefaction wave develops.

The underlying mesh {x;} need not be uniform and, in fact, may and should be
adjusted periodically to the structure of the evolving solution. We feel that the
number of points per unit length should be proportional to the deviation of the local
Riemann problem from that of a single wave. Such a criterion should improve the
quality of the numerical solutions.

We expect much better results and similar improvement in performance when
applying this self-adjusting mesh algorithm to second-order accurate Godunov-like
schemes (Harten and Hyman, 1982). Also, the simplicity of the self-adjusting mesh
algorithm and the fact that it is free from topological and smoothness constraints
should' facilitate construction of a relatlvely simple generahzatlon for multidimen-
s1onal problems : SR N &

APPENDIX A: ' ENTROPY VlscosiTY FI‘OR'
ROE’Ss SCHEME IN A MOVING MESH :

In this Appendix we modlfy the numerlcal flux (2 13) of Roe s scheme to include
entropy considerations. " oo 2 .
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Roe’s scheme is a Godunov-type scheme derived from w(x/t; wy, wR), which is the
solution to the linear Rlemann problem ‘

Wi+ A(wy, we)w, = Oa W(xavo) =Wr, x>0,

= wg, x>0, (A.1a)
where A(w, , wg) satisfies the‘relatlon
Swg) —f(w) = A(WL, Wr)(Wg — W) (A.1b)
Let :
ROwL, we) = (R,,ws R,) (A.2a)
be a matfix; with the columns thé right eigenvectors of 4(wy, wg). Hence,
R™'A(wy, wg)R = D(w, wg), (A.2b)

where D is the diagonal matrix D;;=a; d;;- Denote by u the vector of characteristic
variables

w=Ru. (A.3a)

Under transformation (A.3a), the Riemann problem (A.la) decouples into m scalar
Riemann problems for the characteristic variables

0
E;uk+aR(wL,wR)53C—uk=O, u(x,0)=uy, x<0,
(A.3b)

= u,l}, X > 09
the solution to which is

u(x/t:uy, uy)=uy, X/t < ay, (A30)
3c
=uy,  X/t>a,.

Thus, each k-wave in the Riemann problem (2.2) is approximated by a jump
discontinuity of the size

o, =up —uy N (A4)

that propagates with a speed a,. This is a reasonable approximation when the k-wave

is a shock or a contact discontinuity. When the k-wave is a rarefaction, its approx-
imation by a jump discontinuity brings about entropy condition violations.
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To rectify this problem we modify approximation (A.3c) by introducing an inter-
mediate state u; that simulates the diffusion introduced to a Godunov-type scheme
by a continuous transition between u} and uX:

w(x/tug, ug)=ug,  x/t<ap,
=u¥, ay<x/t<ag, (A.5)
=uy,  ap<x/t
Here
a,';=ak—6k, Cap=a,+6, 06,20 (A.6a)

are to approx1mate the speeds of the fan endpoints if the k-wave is a rarefaction; 5k is
to vanish if and only if the k-wave is a shock.

Once J, is prescribed, then u; is uniquely determmed by the requirement of
conservation (2.6b),

(ak — @)uf = (@, —ap)ux + (ay + auy (A.6b)

(see Fig. A.1). .
Next we evaluate the flux f(&; wy, wg) by the following steps:

7 wtofes b, ufy = [+ 4) — o~ )

+e[E—ab)*t — E—ad)tuF 41 —ad)tul  (ATa)

where b* = max(0, b).
Now we use the relation b* = *(b +|b|) to rewrite (A 7a) as

=2

=& +3¢—a)a +3l€—a+ 0l +E—a, — 6, l] (A.7b)

u (x/t; up, up) dx —Au,f]

> 20

FiG. Al. Solution to the approximate Riemann problem for u,.
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where we have

% Uft w(x/t

A

ade use of (A.4) and (A.6). Next we use the relation

m &
wow)de—dw |= S R [[7 e ol uf) e — auf |
k=1

m

—WL= kZ o Ry, f(.Wn) —f(w) = ,‘Zl o Ry

Wgr

to get

Here Q*(x) denotes

@ =zllx+8d +1x =8l =|x, |«

|
A.8b
= 5k ’ |x] ( :
Expression (2.14) for the numerical flux f(¢; wy, wg) follows immediately from
Egs. (2.7a) and (A.8). v
We turn now to describe. our choice of &, in (A.5) and (A.8). By the Harten—Lax
theorem on Godunov-type schemes (see Section IT), entropy consistency of the
scheme follows from that of the Riemann solver. Hence, to ensure entropy
consistency of modified Roe scheme (2.14) it is sufficient to choose d, so that the
Riemann solver (A.5) satisfies entropy inequality (2.6¢).
First, let us consider the scalar case (m = 1), where (A.5)-(A.6) become

wx/t; we, we)=w;,  x/t<a"
=wyg, a“<x/t<a®, (A.92)
=wg, a®<x/t,
(@ —a")wy = [a(we, we) —alwy)]w + [a0we) — alw, we) we,  (A9b)
al =a(w,,wg)—4, a®=a(w,,wg)+4, (A.9¢)
and
a(wy, wg)(wg — wy) = f(wg) — f (wo). (A.9d)

Motivated by Oleinik’s entropy condition we choose

o= 01232{1 [0, a(wy, wg) - a(wy, w(0), a(w(0), wg) — a(wy, wr)],  (A.10a)
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where w(0) =w, + O(wg— w,); if f(w) is convex, then it is enough to check the
endpoints #=0 and =1 in (A.10a); that is,

6 =max|0, a(wy, wg) — a(wy), a(wg) — a(w., wp)]- _ | (A.10b)

Note that § = 0 if and only if the solution of the Riemann problem is a shock.

Now we show that this choice of  implies that Rlemann solver (A.9) is consistent
with entropy inequality (2.6¢c). :

Let wg(x/t; wy, wg) denote the exact solution of the Rlemann problem. Since J in

(A.10) was chosen so that

WE(.V;WL’WR)=W(J’§WL’WR)=WL_ for y<a®

and .
We(¥s we, wg) = w(y; wy, wg) = wy for y>a¥,

hence by conservation
. , ' v
(@® —a")wy =r we(y; Wi, wg) dy; (A.11a)

therefore it follows from Jenssen’s inequality that

(@~ uws) < [ UOw(33 w0 W) (A11b)

and consequently

[ uwe/ts e w) <[ vy wea we) dy o
-4 -4 (A.11c)
LA[u(wy) + u(wp)] — t[F(wg) —F(w,)].

The last inequality follows from the fact that the exact solution satisfies (2.6¢). This
completes the proof that modified Roe scheme (2.14) w1th (A.10) satisfies the
entropy condition in the scalar case.

Numerical experiments described in Sectlon IV. support the conjecture that
modified Roe scheme (2.14) with (A.12) is consistent with the entropy inequality also
in the system case.

Remark. 1t is interesting to note that if the average state ug in (A.5) is replaced
by a linear transition u;*(x/¢), where

L
y—ag
up () = + 2 (o
’ k

x—w

ug)  for ag<y<ag,

(u

’*l"
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then the resulting scheme is (2.14) with Qg (x) defined by

Qi (x) =|x|, for |x

I
= 3((x*/3) + 8), for |x|

2 0y
<9

k*

This function is a continuously differentiable approximation to |x|.

Next we describe the choice of d, in the case of systems of conservation laws. In
the spirit of Liu’s extension of Oleinik’s entropy conditions to systems, we propose to
apply (A. 10) to each of the k-waves, i.e.,

O = 021;121 [0, ak(wL9 Wg) — ak(wuw(e)) ak(w(H), Wg) — a,(Wy, WR)] " (A.12a)

and in the case of a convex equation of state
0= m?«X[O’ ag(wy, wg) — ag(w,), ag(Wg) - ag(we, WR)]- (A.12b)

Let us now consider a Riemann problem where w, and wy satisfy RH relation
(1.4a) with some speed of propagation S. It follows from (2.12a) that wy — w, =

Rg(wp,wg) and S=agz(w, ,wy) for some k=k, Hence our approximate
Riemann solver is just (A.9) with (A.12) for k = k,. In this case we can use the exact
same argument of the scalar case and conclude by (A.11) that the Riemann solver
satisfies entropy inequality (2.6c).

On the other hand, the modified Roe scheme is in conservation form; therefore, its
limit solution is a weak solution of (1.1). Hence, the only entropy violation possible
in the limit solution is that of an “expansion shock,” i.e., a discontinuity which
satisfies RH condition (1.4a) but not entropy inequality (1.4b); this is exactly the
case considered above.

APPENDIX B: ROE’S SCHEME FOR
ONE-DIMENSIONAL EULER EQUATIONS

In this Appendix we describe how to compute the quantities a,, R,, and q, in
Roe’s scheme (2.12)-(2.14) for the Euler equations of gas dynamics (4.1). Define

ey, (B.1a)
o'*m)[{p'"?), | (B.1b)

il

i
h

and
e= - DE—4)) (B.Io)

{
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where & = (E + p)/p is the enthalpy and (w) denotes
(w)=13(we + wg). ' (B.1d)
Then the eigenvalues of (2.12a) are
a,(w,,wg)=#—7; a,(wy, wg) =1 as(wy, wg) =1 +¢; (B.2)
and the corresponding eigenvectors are
1 1 1
h — ¢ i’ h + i

(512

To obtain expressions for a;(wy, wg), 0,(WL, W), a3(wp, wg) in (2.13b), define
=(y— 1)([ER —E. ]+ 3@ [pg —pL] — @[mg — m,])/C? (B.4a)
and

cz4= ([mg — my ] —alpr —pL1)/6, (B.4b)

then evaluate ¢, a,, a; by

o, =1(c; —¢,), (B.5a)
a, = [pr —pL] — ¢y ‘ (B.5b)
and
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